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Spectral Estimation of NMR Relaxation
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In this paper, spectral estimation of NMR relaxation is con-
structed as an extension of Fourier Transform (FT) theory as it is
practiced in NMR or MRI, where multidimensional FT theory is
used. nD NMR strives to separate overlapping resonances, so the
treatment given here deals primarily with monoexponential decay.
In the domain of real error, it is shown how optimal estimation
based on prior knowledge can be derived. Assuming small Gauss-
ian error, the estimation variance and bias are derived. Minimum
bias and minimum variance are shown to be contradictory exper-
imental design objectives. The analytical continuation of spectral
estimation is constructed in an optimal manner. An important
property of spectral estimation is that it is phase invariant. Hence,
hypercomplex data storage is unnecessary. It is shown that, under
reasonable assumptions, spectral estimation is unbiased in the
context of complex error and its variance is reduced because the
modulus of the whole signal is used. Because of phase invariance,
the labor of phasing and any error due to imperfect phase can be
avoided. A comparison of spectral estimation with nonlinear least
squares (NLS) estimation is made analytically and with numerical
examples. Compared to conventional sampling for NLS estima-
tion, spectral estimation would typically provide estimation values
of comparable precision in one-quarter to one-tenth of the spec-
trometer time when S/N is high. When S/N is low, the time saved
can be used for signal averaging at the sampled points to give
better precision. NLS typically provides one estimate at a time,
whereas spectral estimation is inherently parallel. The frequency
dimensions of conventional nD FT NMR may be denoted D,, D,,
etc. As an extension of nD FT NMR, one can view spectral
estimation of NMR relaxation as an extension into the zeroth
dimension. In nD NMR, the information content of a spectrum
can be extracted as a set of n-tuples (w,, . . . @,), corresponding to
the peak maxima. Spectral estimation of NMR relaxation allows
this information content to be extended to a set of (n + 1)-tuples
(A, @4, . . . ®,), where A is the relaxation rate. © 2000 Academic Press
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1. INTRODUCTION

determine the linewidths of the resonances detected during |
acquisition period of an NMR experimenht.ongitudinal relax-
ation determines the minimum recycle time. The relaxation rat
of higher order operators during multidimensional experimen
determine the linewidths of resonances in the indirectly detect
dimensions and the sensitivity of the experiment. Relaxation pr
vides experimental information on the physical processes govel
ing relaxation, particularly of dynamics. Longitudinal and trans
verse NMR relaxation form a basis for MR imaging. However
very few methods are available for the estimation of the NMF
monoexponential relaxation rate, with nonlinear least squar
(NLS) estimation being the most common. Optimal experiment:
design in the context of NLS is not a trivial task pecause NLS
estimation is believed to be biased. Furthermore, the analy
provided by NLS becomes implicit in pulse program desig)n (
We have found that alternative concepts, like median estimatic
(3), have advantages over NLS estimation in NMR relaxatio
studies. However, a proper and widely based perspective of
ponential analysis of general physical phenomenon was not avz
able until recently4). In that review, the authors observed that
Fourier transform (FT) approach gave estimates that correlat
best with other physical measures. In this paper, we extend that
approach into the context of NMR with a small number of sampl
points and into the domain of complex numbers.

2. SPECTRAL ESTIMATION

Let us focus on a monoexponential transient of the followin
form:

f(t) = Ae™"' + B, (1]
where initially we assume that all quantities are real and tr
relaxation ratel, is positive. This form is general enough to
encompass both longitudinal and transverse relaxation and sit

tions similar to transverse relaxation in whiBhs different from
zero due to instrumental effects. The one-sided continuous Four

Relaxation is a fundamental aspect of nuclear magnetic réfiRegral transformg, 6) of Eq. [1] gives its transform as
nance. The relaxation rates of single-quantum transverse operators

? Abbreviations used: NMR, nuclear magnetic resonance; MRI, magnet
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F(w) = AL — iw)/(L? + 0?) + 27B&(w), [2] for 12 points,fi,, ..., f,,
Ldt = In((f, — f3 + fg — f; + fg — f11)/
and hence the decay rdtecan be extracted from the real and
imaginary parts of (o) as (fo =+ fo—fa+ f1o— f10). (6]

L = —wReF(w)/Im(F(w)) 3] The_se fo.rmulas. provide a.fan_wil)./ of estimators each giving
noniterative estimate af which is independent of any assump-
tion concerning the error distribution within the data and with:
out the necessity to simultaneously estimate the other para
Bters. In the context of FT NMR, the data valdied,, ..., are

for any nonzero angular frequenay In practise, the discrete
Fourier transform %) must be used with sampled data. Thi

omfe;hrﬁgr:zead\goncfrf; zz(t:ge :)aeSt r_]rws_thod fo; t?etﬁztteErmmSa%%bers which come from a (possibly multidimensional) Fou
xp : y rat.(This suggests g. [3] rier transform and typically are block exponent 32-bit integers

may prowde_ r_elaxat|o_n estimates, v_vhlch_ar_e of minimum varl ;¢ generally assumed that these high-precision numbers ¢
ance and minimum bias. The relationship in Eq. [3] is a ve

ly . .
S . . ontaminated by Gaussian error.
good approximation when the discrete Fourier transform is y

used with long records of 256 points or more but is a poor
approximation when short data records are collected, like in

NMR relaxation. Nevertheless, for many exact relationships g, any functionF of x,, the error (variance) of can be
involving the continuous FT there exist similar exact relation: - 1ated according to the Gaussian error propagation tec
ships involving the DFT. nique as

Assume a sample period dft, so that we have relaxation
dataf,, f,, fs, f,, . . . sampled at times @t, 2dt, 3dt, ... . We = =
use the general convention that bold symbols refer to random (8F%) = > ( (8%;8%) - ) [AA]
variables and unbold symbols refer to their mean values. Ac- i \OXi 9
cording to Eq. [1], the mean values of the first four sampled

3. IN THE LIMIT OF SMALL ERROR

relaxation data are where(8x;5x;) is the error (covariance) matrix element. Mea
surement error is usually assumed to be independent, in whi

f,=A+B: f,=Ae '+ B; case off-diagonal elements of the covariance matrix are zel

At this point we need make no assumptions about the err

f,= Ae 2% 4+ B: f, = Ae 39 + B. [4] distribution function, except that the error is assumed to b

small. A careful numerical study8) of Gaussian error propa-
Now, for a DET of orderN, the knth element can be repre_gation in the limit of small error of this family [6] of estimators
sented as N e 2" hence wherk = N/2, coefficients are and of related divisor formulasi) reveals that it is the four-
1N e™ k=0,...,N — 1. Thus, substitution from [4] point spectral estimator Eg. [6] which is of minimum variance
shows that for a short record DFT, the decay rate can HeVe assume that each “measured” data value has error of t
exiracted from data as same standard deviation, then, in the limit of small error,
each partial derivative contributes error of the amalnvf, o,
and the total estimation error (standard deviation) is the ro
squared sum of all contributions. In the limit of small error,
is unbiased and each ®f, ..., f, can be substituted for its
wherew is selected to be at the half Nyquist angular frequencyxpression derived from Eq. [4]. The sum of terms can then t
wy/2. ConsequentlyN must be a multiple of four. Expressionexpressed conventionally as a rational form to give an expre
[5] could be evaluated within NMRpiper), particularly if it sjon for the standard deviation of the estimate,
was the end result of a multidimensional FT calculation. The
DFT can be thought of as a matrix of complex values, hence

Ldt = In(ReF(w))/Im(F(w))), [5]

2 2
this latter expression can be used to construct a more rational > = % \/(f —1,)2 + 0, =t
expression for the extraction &ffrom data. Thereford, can 1o 24
be extracted from data as follows: o \,E \/1 + g2Ldt
E = |A|dt (1-— e—ZLdt) . [7]

for 4 points,fq, . .., 1,

_ B B This last expression, Eg. [7], can be optimizedLidt. It is

Ldt=In((f, = fa)/(f, = f)) minimal when

for 8 points,fy, . .., fg,

1 /(3 1 __
Ldt = In((f, — fs + fs — £)/(f, = £, + f5 — fo)) Ldt=5 '”(2+ 2 \/’17> = 0.635. (8]
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FIG. 1. 3(Ldt), standard deviation of estimate in unitsefA|dt for three estimators. The dark curve at bottom is for fa(£ f5)/(f, — f.)), four-point
spectral estimator aby;,, the dotted line is for spectral estimator 0.5 Ify((- f,)/(fs — f,)) (we are indebted to the reviewer for suggesting this estimator) ar
the dashed line is for the divided difference formula (¢ f,)/(f, — f3)) (4).

Thus, if we have a prior estimate of the relaxation rate, we be identified with the signal-to-noise rati®N, then the num-
can obtain an estimate of minimal variance if we chaiiséhe ber of significant bits provided by thi&/N is log,(S/N) = n.
sample period such thadt = 0.635.Sampling at the nearby Given a prior estimate of exponential relaxation ratethen
half-life would imply thatLdt = In(2) = 0.693, given the prior the optimal variance is obtained if we select the sample perio
estimate oL. A plot of X as a function of_dt is shown in Fig. dt, such that.dt = 0.635.Then, at the optimum, the estima-
1.3 is very flat at the bottom. It can be seen that we will haviion standard deviatior;, will be calculated to bd.2(a/Adt).
nearly optimal variance when 0.8 Ldt < 0.8. A/c can be This says that the number of significant bits Jdg>.) in the
identified with the signal-to-noise rati&/N. Thus, the estima- estimateL will be n — 2.73. Thus, a minimum of three
tion variance can be reduced linearly with decreasi/a L  significant bits is required o®/N in order to have any signif-
gives a point estimate. Interval estimation can be obtained ioance in an estimate, even at the optimum.
a separate measurement3sN.

It is of interest to consider the spectral implications of this 4. UNBIASED ESTIMATION
insight.L is an imaginary frequency. In the complex plane itis
close to some real frequencies, hence there is some optimalhe bias of an estimatdr, can be determined by evaluation
sample period. Since a relaxation decay dies away quick@f,its expectation valuek(L ) (9). It is reasonable to assume a
only a limited number of samples are needed. Rather tha@rmal, i.e., Gaussian, probability density function for FT erro
oversampling, it is better to put effort into signal averaging &t this stage. As a random variable we write the spectr
the optimal four points so as to redublS. The four-point €estimator as
spectral estimator can be thought of as a kind of digital filter
which ignores irrelevant information. If the quantitpfo) can Ldt = In((f, — f5)/(f, — f,)). [9]
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FIG. 2. A,(Ldt), the second-order bias, in units @f/A%dt.

For our four-point spectral estimatok,, we can combine o'? g'?
variation terms in the numerator and denominator and express A=W (f,— )2 ~ v (f,— f5)2) (12]
its expectation value as

where
N *I((fl—f3+o’x))
B(L)dt=57 A W(X) = X hypergeorf{3/2, 1, 1,[2], 2¥/2,  [13]

X e YA2dxdy, [10] in which “hypergeom” is the Barnes'’s extended hypergeome
ric function. In Eq. [11], the first term on the right, Inf(( —
where ¢’ = V20. The logarithm can be expanded as afy)/(f, — f,)) = Ldt, gives the true value df, and the other
asymptotic expansioril() (not a convergent expansion) ii  terms are the bias terms. Thus, the four-point spectral estima
and the integral evaluated term by terfri). All of the terms alone is a biased estimator of relaxation rateThis may be an

in odd powers ofs’ evaluate to zero. unavoidable aspect of many kinds of nonlinear estimatiol
which is seen to have the potential to rectify noise power int

(fy— fs) bias. However, with a separate measurement of noise statist

E(L)dt= In((fz—f4)> we can calculate a reasonable estimate of the bias and subti

away the bias to give an unbiased estimatke.dfurther insight
can be derived by focusing on the form of the second-orde

o'? 1 1
- _ 14
+ 2 ((f2 —f)2 (f,—fy) 2) +0(e"%) bias term,A,. After substitution from [4], it can be expressed

[11] as
. . . o2eLt

In an asymptotic expansion the remainder term does not nec- A, = — [14]

essarily grow smaller with higher order. The bias expression Adt(1—e )

may not be well behaved for large However, there may be

some insight derived from summing such a series. The coafid plotted as a function afdt in Fig. 2. This function has a
ficients,C,, of the even order terms can be computed to higherinimum atLdt = 3 In(2) = 0.347. Thus, it can be seen that
order. The exponential generating function\t/{ — 2x(1 + the objectives of minimum variance and minimum bias ar
V1 — 2x)) and the general coefficiet, = (2k — 1)!/ contradictory experimental design objectives. It is probabl
(2k!) can be computed1@). This allows the bias to be better to aim for minimum or near minimum variance and t
expressed asymptotically in closed form: subtract off the bias.
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Spectral estimation of NMR relaxation is an exact treatmerih the presence of an exponentially decaying transient, tt
Other treatments are not exact. The purpose of an exact treadpectation of the imaginary part is zero and the real part
ment of NMR relaxation is to allow the relaxation estimates tonbiased. This is much simpler than in the case of real errc
be used as if they were measurement data, for the purposeBefermination of the variance about the mean of the real pe
further mathematical modelind.8). Such mathematical mod- requires explicit construction of the quantity in Eq. [15]. Let
eling generally falls into the category of nonlinear estimation

and may involve nonlinear least squares or some other ad- P,=Re(f, — fy), P,=Im(f, —fy),
vanced techniques like median estimati8h For this purpose _ _
it is necessary that the values estimated be unbiased and that Q =Re(f, —f,), Qi =Im(f;—f,). [18]

reasonable estimates of the standard deviation of each estimate

be available. Spectral estimation of NMR relaxation provide . . » .
rigorous mathematical framework in which this can lf\eﬁe wish to evaluate the quantiy((Re())’), the variance

. about zero. We write
achieved.

(P, +a'u)?+ (P + a'v)ﬂ 2

5. THE ANALYTICAL CONTINUATION 24t2 =
(Rt ['”( Q-+ o'+ (Q + ')’

OF SPECTRAL ESTIMATION

[19]

Now let us assume that the quantitiesB, andf in Eq. [1] are . . .

complex. Since spectral estimation is constructed as an extenﬁgnbefore’ the quantity on the right-hand side of Eq. [19] ca

of Fourier transform theory in which all quantities are comple €

we may expect analytical continuatiahd] of spectral estimation

of NMR relaxation to provide an extension into its natural d
main. Phase invariance is seen to be self-evident from the divisor o e
structure of the estimator, Eq. [6]. In the presence of an exponen-E((Re(L ))7)dt

tially decaying transientl. is an estimator for a real positive f, — f,

quantity and so any imaginary part can be identified as due to error = [ In( .t

and ignored. We may writel{) 2

expanded in a power seriesdt and integrated term by
térm using the pdf weighted integral of Eq. [16]. Evaluated t
second order, this gives

)|

1 1
¥ (P$+ P2t Q7+ Qf>"'2 +0(eD. 120

Ldt = Re(In((f, — f3)/(f, — 1))
=In(|(f, — f)/(f,— f 15
(1Cf, = £/ (f = f)D) [15] On the right side of Eq. [20], the first term is the square of th
mean value of the estimator. The second term is the secor
when Im(In((f, — f3)/(f, — f,))) < threshold,zero other order contribution to the variance. Substituting from Eq. [18]

wise. _ _ the latter can be expressed as a functiomrof
Determination of the expectation value of the estimator now
requires evaluation of a quadruple integral for bivariate com- 1 1 o2
plex Gaussian error, 2<|f1 1 + [ 2) at
= I Y =2 ! ! o
E(L)dt= pp T A\ (1 e 22 + (e~ — e~%d)2| |A[Zq2 [21]
fi—fy+ o' (U+ V) If we take the square root pf Eq. [2;] and simplify, we ge_I
X In p . precisely the same form as is shown in Eq. [7] and plotted i
f,—f,+ o'(r +is)

Fig. 1. However, in this instance tha| is the complex mod-
X @ TurVETES 2q ydvdrds. [16] ulus and accounts for a greater portion of the signal. Hence, t
variance and standard deviation are reduced.

As before, the logarithm can be expanded as a power series in
¢’ and integrated term by term. This is a convergent sum with
only two nonzero terms.

6. COMPARISON WITH NLS

Clearly, there is no natural extension of NLE5[ to com-
. plex data. For analytical comparison we start by considerin
K1y ) fl - f3 . .
— — | signu gl 1 the case of four points of real data collected at equal tim
2 4 increments ofdt. It was Oberlanderl6) who first recognized
[17] that NLS may have an analytical solution. If we take the

fi—fs

fz_f4

E(L)dt= In(
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expressions in Eq. [4] and form the sum of squared deviatioasthors measured 20 points spanning 20 s. An optimal sam|
expression, then differentiate with respecttpB, andL and period for SE would be 0.635*4.56% 2.896 s. Starting with
set these expressions to zero, we obtain a system of thtlee first point at = 0, optimal 4-point SE would use equally
equations which can be solved linto obtain spaced points with the last pointtat 8.869 s. NLSrequires
points at longer delays because of the need to accurate
estimate baseline offset. SE represents a large experimer

L=— 1 In(RootOA((f, — 2f, + f,) Z* + (2f, — 2f, time saving. SE with 512 SR scans is likely to require less the
dt 1 the instrument time.
+4f, — 4f) Z3 + 3(f, — fs — f, + f,) Z2 GivenS/N = 3000 andassuming four-point SE estimation

is done at the optimal sampling period, 2.896 s, a calculation
Gaussian errorg) gives an estimation error standard deviatior
of +0.0054 compared ta=0.007 for three-parameter NLS.
It can be seen that this expression has similarity to that of thience, we provide better precision with 1/4 the work. In ou
four-point spectral estimator and might yield the same valtleeoretical formulation we advocate the estimation of rela
under some circumstances. However, since a quartic with ratibn rate as in kinetics. Whe®iN = 3000, thesecond-order
coefficients may have up to four real roots, there may lestimation bias in relaxation rate is only 1.5E-7 1/s.
uncertainty regarding whether the global minimum has beenlt has been reported that wh&iN = 100, NLS carachieve
achieved via numerical optimization. NLS needs to estimate allprecision of 2% in exponential estimation. In this case, th
of the parameters, which is more than we desire. It can be sastimation error standard deviation for four-point spectral e:
from [22] that analysis of error propagation or of bias as wimation is 6.6%. Assuming a saturation recovery experimel
have done for spectral estimation is an intractable problem famd neglecting other contributions to experiment time, th
NLS even with just four points. estimated time saved can be calculated.

NLS relies on approximation. For statistical analysis the The total time for four-point spectral estimation in SR is
covariance matrix can be calculated from the inverse of the
Hessian 15), yet generally, in NLS, the Hessian is only ap- 0 + dt + 2dt + 3dt = 6dt.
proximated. The approximations used in NLS are good approx-
imations wherS/N is high, when the number of points used i
large, and when convergence is good. However, fad¢
defines the experimentally interesting situatigh (n NMR we
wish to minimize machine time so a small number of points is
advantageous. Spectral estimation does not require iteration so
convergence is not an issue nor is the quest®rof whether or
to use a two-parameter fit or a three-parameter fit.

For numerical comparison, Fig. 3 of Reg)(is worth con- dt = 0.635T,,
sidering. A total of 512 SR scans were used to achi&e =
3000. For awo-parameter fit they repoiit, = 4.95+ 0.15 6dt = 3.81T,.
s,M, = 99.4 + 1.1, andy® = 69923, while for a three-
parameter fitT, = 4.561 = 0.007,M, = 98.01 = 0.05,
a = —0.0397+ 0.004, andy® = 121 for NLS analysis of 20
points unequally spaced in time.

It is worth noting the 9% error between NLB estimates
from two-parameter and three-parameter fits. Visually, the two
fits appear to be very similar. This illustrates a limitation of the
concept of data fitting to an exponential function and then
visualizing the data. Good visualization requires more data
which can be counterproductive and wasteful. Also, an exp®his implies a time saving of 40/3.8% 10.5 times. This time
nential function is an extreme test of the mathematical assungavings can be used to signal average at the four points with
tions of NLS that the error in data is small. Error may b&crease inS/N of sqrt(10.5)= 3.24 times, since estimation
relatively small over part of the range but not over the wholerror standard deviation is linear &N this implies that it is
range. reduced by 6.6%/3.24 2%.

Unfortunately, the authors failed to use software which NLS is believed to be biased but the nature of bias is not we
reports the covariance of estimation error. We have found thenederstood. We have shown a bias that is proportional
may be a large correlation between estimation errors of vafN/S)?, so it is not wise to ignore bias in the experimentally
ables. Our 4-point spectral estimator is an analytical expressiateresting case of pod®N. In general 15), bias is propor-
which is orthogonal in estimation to other parameters. Thi®nal to 1h, wheren is the number of points used, but the

+(4f, — 4, + 2f, — 21) Z — 2f, + T, + £,)). [22]

?\Iow at optimum,

Ldt= 0.635,

For a typical NLS SR experiment assume 16 equally spac
times out to a maximum ofB,, for a total time of

0+ 1/3T, + 2/3T, + - - -+ 4 2/3T, + 5T,

= 15*16*1/2*1/3 = 40T,.
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proportionality constant is unknown. The need to use a largral estimation as a generalization of conventional NMR. Spe«
number of points in NLS to mimimize bias is wasteful of timetral estimation can be applied to conventional NMR relaxatio
Reference 17) provides a method by which bias can be repulse sequences in a straightforward manner. In 2D NOES
duced to a value which is proportional tonf/but this method the cross-peak volumes give a rough approximation of the @
is tedious and has never been used in NMR. diagonal elements of the cross-relaxation matrix. If expande

In summary, efficiency and rigorous mathematical statistias one more dimension with four slices at equally space
(9) requires that we use four-point spectral estimation ratherixing times, spectral estimation will give estimates of the

than NLS for the estimation of NMR relaxation. NOE build up rates as the end result oh@ FT calculation.
Many kinds ofnD pulse sequences could be likewise expande
7. THE BASEPLANE by appending a (possibly heteronuclear) Carr—Purcell s

quence. Similar considerations may apply to MRI.
Consider what happens when we apply the spectral estimator
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