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In this paper, spectral estimation of NMR relaxation is con-
structed as an extension of Fourier Transform (FT) theory as it is

determine the linewidths of the resonances detected durin
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practiced in NMR or MRI, where multidimensional FT theory is
used. nD NMR strives to separate overlapping resonances, so the
treatment given here deals primarily with monoexponential decay.
In the domain of real error, it is shown how optimal estimation
based on prior knowledge can be derived. Assuming small Gauss-
ian error, the estimation variance and bias are derived. Minimum
bias and minimum variance are shown to be contradictory exper-
imental design objectives. The analytical continuation of spectral
estimation is constructed in an optimal manner. An important
property of spectral estimation is that it is phase invariant. Hence,
hypercomplex data storage is unnecessary. It is shown that, under
reasonable assumptions, spectral estimation is unbiased in the
context of complex error and its variance is reduced because the
modulus of the whole signal is used. Because of phase invariance,
the labor of phasing and any error due to imperfect phase can be
avoided. A comparison of spectral estimation with nonlinear least
squares (NLS) estimation is made analytically and with numerical
examples. Compared to conventional sampling for NLS estima-
tion, spectral estimation would typically provide estimation values
of comparable precision in one-quarter to one-tenth of the spec-
trometer time when S/N is high. When S/N is low, the time saved
can be used for signal averaging at the sampled points to give
better precision. NLS typically provides one estimate at a time,
whereas spectral estimation is inherently parallel. The frequency
dimensions of conventional nD FT NMR may be denoted D1, D2,
tc. As an extension of nD FT NMR, one can view spectral
stimation of NMR relaxation as an extension into the zeroth
imension. In nD NMR, the information content of a spectrum
an be extracted as a set of n-tuples (v1, . . . vn), corresponding to

the peak maxima. Spectral estimation of NMR relaxation allows
this information content to be extended to a set of (n 1 1)-tuples
(l, v1, . . . vn), where l is the relaxation rate. © 2000 Academic Press

Key Words: spectral estimation; NMR relaxation; analytical
ontinuation; Gaussian error propagation; nonlinear least squares.

1. INTRODUCTION

Relaxation is a fundamental aspect of nuclear magnetic
nance. The relaxation rates of single-quantum transverse op

1 To whom correspondence should be addressed at Department of Mo
iology and Biochemistry, Simon Fraser University, 8888 University D
urnaby, BC, V5A 1S6, Canada. E-mail: cushley@sfu.ca. (No reprints w
vailable.)
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acquisition period of an NMR experiment.Longitudinal relax
ation determines the minimum recycle time. The relaxation
of higher order operators during multidimensional experim
determine the linewidths of resonances in the indirectly det
dimensions and the sensitivity of the experiment. Relaxation
vides experimental information on the physical processes go
ing relaxation, particularly of dynamics. Longitudinal and tra
verse NMR relaxation form a basis for MR imaging. Howe
very few methods are available for the estimation of the N
monoexponential relaxation rate, with nonlinear least sq
(NLS) estimation being the most common. Optimal experim
design in the context of NLS is not a trivial task (1) because NL
estimation is believed to be biased. Furthermore, the an
provided by NLS becomes implicit in pulse program design2).
We have found that alternative concepts, like median estim
(3), have advantages over NLS estimation in NMR relaxa
studies. However, a proper and widely based perspective
ponential analysis of general physical phenomenon was not
able until recently (4). In that review, the authors observed th
Fourier transform (FT) approach gave estimates that corre
best with other physical measures. In this paper, we extend th
approach into the context of NMR with a small number of sam
points and into the domain of complex numbers.

2. SPECTRAL ESTIMATION

Let us focus on a monoexponential transient of the follow
form:

f~t! 5 Ae2Lt 1 B, [1]

where initially we assume that all quantities are real and
relaxation rate,L, is positive. This form is general enough
encompass both longitudinal and transverse relaxation and
tions similar to transverse relaxation in whichB is different from
ero due to instrumental effects. The one-sided continuous F
ntegral transform (5, 6) of Eq. [1] gives its transform as

lar
,
e

2 Abbreviations used: NMR, nuclear magnetic resonance; MRI, mag
resonance imaging; FT, Fourier transform; 2D, two dimensional;nD, n di-
mensional; pdf, probability density function;S/N, signal-to-noise ratio;N/S,
noise-to-signal ratio; NOESY, nuclear Overhauser effect spectroscopy;
nonlinear least squares.
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F~v! 5 A~L 2 iv!/~L 2 1 v 2! 1 2pBd~v!, [2]
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210 NAUGLER AND CUSHLEY
nd hence the decay rateL can be extracted from the real a
maginary parts ofF(v) as

L 5 2vRe~F~v!!/Im~F~v!! [3]

or any nonzero angular frequencyv. In practise, the discre
Fourier transform (5) must be used with sampled data. T
method is advocated as the best method for the determin
of a monoexponential decay rate (4). This suggests that Eq. [
may provide relaxation estimates, which are of minimum v
ance and minimum bias. The relationship in Eq. [3] is a
good approximation when the discrete Fourier transfor
used with long records of 256 points or more but is a p
approximation when short data records are collected, lik
NMR relaxation. Nevertheless, for many exact relations
involving the continuous FT there exist similar exact relat
ships involving the DFT.

Assume a sample period ofdt, so that we have relaxatio
data,f 1, f 2, f 3, f 4, . . . sampled at times 0,dt, 2dt, 3dt, . . . . We
use the general convention that bold symbols refer to ran
variables and unbold symbols refer to their mean values
cording to Eq. [1], the mean values of the first four sam
relaxation data are

f1 5 A 1 B; f2 5 Ae2Ldt 1 B;

f3 5 Ae22Ldt 1 B; f4 5 Ae23Ldt 1 B. [4]

Now, for a DFT of orderN, the knth element can be repr
ented as 1/N e22pikn/N, hence whenk 5 N/ 2, coefficients ar

1/N e2pik, k 5 0, . . . , N 2 1. Thus, substitution from [4
shows that for a short record DFT, the decay rate ca
extracted from data as

Ldt 5 ln~Re~F~v!!/Im~F~v!!!, [5]

wherev is selected to be at the half Nyquist angular freque
vN/2. Consequently,N must be a multiple of four. Expressi
[5] could be evaluated within NMRpipe (7), particularly if it
was the end result of a multidimensional FT calculation.
DFT can be thought of as a matrix of complex values, h
this latter expression can be used to construct a more ra
expression for the extraction ofL from data. Therefore,L can
be extracted from data as follows:

for 4 points,f1, . . . , f4,

Ldt 5 ln~~ f1 2 f3!/~ f2 2 f4!!

for 8 points,f1, . . . , f8,

Ldt 5 ln~~ f1 2 f3 1 f5 2 f7!/~ f2 2 f4 1 f6 2 f8!!
ion
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Ldt 5 ln~~ f1 2 f3 1 f5 2 f7 1 f9 2 f11!/

~ f2 2 f4 1 f6 2 f8 1 f10 2 f12!!. [6]

These formulas provide a family of estimators each givin
noniterative estimate ofL which is independent of any assum
ion concerning the error distribution within the data and w
ut the necessity to simultaneously estimate the other pa
ters. In the context of FT NMR, the data valuesf 1, f 2, . . . , are

numbers which come from a (possibly multidimensional) F
rier transform and typically are block exponent 32-bit integ
It is generally assumed that these high-precision numbe
contaminated by Gaussian error.

3. IN THE LIMIT OF SMALL ERROR

For any functionF of xi , the error (variance) ofF can be
alculated according to the Gaussian error propagation
ique as

^dF 2& 5 O
i , j

S ­F

­ xi
z ^dxidxj& z

­F

­ xj
D , [AA]

where^dxidxj& is the error (covariance) matrix element. M-
surement error is usually assumed to be independent, in w
case off-diagonal elements of the covariance matrix are
At this point we need make no assumptions about the
distribution function, except that the error is assumed t
small. A careful numerical study (8) of Gaussian error prop
gation in the limit of small error of this family [6] of estimato
and of related divisor formulas (4) reveals that it is the fou
point spectral estimator Eq. [6] which is of minimum varian
If we assume that each “measured” data value has error
same standard deviation,s, then, in the limit of small erro
each partial derivative contributes error of the amount­L/­f is,
and the total estimation error (standard deviation) is the
squared sum of all contributions. In the limit of small erroL
is unbiased and each off 1, . . . , f 4 can be substituted for i
expression derived from Eq. [4]. The sum of terms can the
expressed conventionally as a rational form to give an ex
sion for the standard deviation of the estimate,L:

O 5
s

dt Î 2

~ f1 2 f3!
2 1

2

~ f2 2 f4!

O 5
s

uAudt

Î2Î1 1 e2Ldt

~1 2 e22Ldt!
. [7]

This last expression, Eq. [7], can be optimized inLdt. It is
minimal when

Ldt 5
1

2
lnS3

2
1

1

2
Î17D 5 0.635. [8]
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211SPECTRAL ESTIMATION OF NMR RELAXATION
Thus, if we have a prior estimateL of the relaxation rate, w
can obtain an estimate of minimal variance if we choosedt, the
sample period such thatLdt 5 0.635.Sampling at the nearb
half-life would imply thatLdt 5 ln(2) 5 0.693, given the prio
estimate ofL. A plot of S as a function ofLdt is shown in Fig
1. S is very flat at the bottom. It can be seen that we will h
nearly optimal variance when 0.5, Ldt , 0.8. A/s can be
identified with the signal-to-noise ratio,S/N. Thus, the estima
tion variance can be reduced linearly with decrease inN/S. L
gives a point estimate. Interval estimation can be obtaine
a separate measurement ofS/N.

It is of interest to consider the spectral implications of
insight.L is an imaginary frequency. In the complex plane
close to some real frequencies, hence there is some op
sample period. Since a relaxation decay dies away qu
only a limited number of samples are needed. Rather
oversampling, it is better to put effort into signal averagin
the optimal four points so as to reduceN/S. The four-poin
spectral estimator can be thought of as a kind of digital
which ignores irrelevant information. If the quantity (A/s) can

FIG. 1. S(Ldt), standard deviation of estimate in units ofs/uAudt for thre
spectral estimator atvN/2, the dotted line is for spectral estimator 0.5 ln((f 1 2
the dashed line is for the divided difference formula ln((f 1 2 f 2)/( f 2 2 f 3))
e
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be identified with the signal-to-noise ratio,S/N, then the num
ber of significant bits provided by thisS/N is log2(S/N) 5 n.
Given a prior estimate of exponential relaxation rate,L, then
the optimal variance is obtained if we select the sample pe
dt, such thatLdt 5 0.635.Then, at the optimum, the estim
tion standard deviation,S, will be calculated to be4.2(s/Adt).
This says that the number of significant bits log2(L/S) in the
estimateL will be n 2 2.73. Thus, a minimum of thre
significant bits is required ofS/N in order to have any signi
icance in an estimateL, even at the optimum.

4. UNBIASED ESTIMATION

The bias of an estimatorL , can be determined by evaluat
of its expectation value,E(L ) (9). It is reasonable to assum
normal, i.e., Gaussian, probability density function for FT e
at this stage. As a random variable we write the spe
estimator as

L dt 5 ln~~f 1 2 f 3!/~f 2 2 f 4!!. [9]

stimators. The dark curve at bottom is for ln((f 1 2 f 3)/( f 2 2 f 4)), four-point
( f 3 2 f 4)) (we are indebted to the reviewer for suggesting this estimator
.

e e
f 2)/
(4)
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212 NAUGLER AND CUSHLEY
For our four-point spectral estimator,L , we can combin
variation terms in the numerator and denominator and ex
its expectation value as

E~L !dt 5
1

2p E
2`

` E
2`

`

lnS ~ f1 2 f3 1 s9x!

~ f2 2 f4 1 s9y!D
3 e2~ x 21y 2!/ 2dxd y, [10]

where s9 5 =2s. The logarithm can be expanded as
asymptotic expansion (10) (not a convergent expansion) ins9
and the integral evaluated term by term (11). All of the terms
n odd powers ofs9 evaluate to zero.

E~L !dt 5 lnS ~ f1 2 f3!

~ f2 2 f4!
D

1
s9 2

2 S 1

~ f2 2 f4!
2 2

1

~ f1 2 f3!
2D 1 O~s9 4!

[11]

In an asymptotic expansion the remainder term does not
essarily grow smaller with higher order. The bias expres
may not be well behaved for larges. However, there may b
some insight derived from summing such a series. The
ficients,Ck, of the even order terms can be computed to hi
order. The exponential generating function 1/(=1 2 2x(1 1

1 2 2x)) and the general coefficientCk 5 (2k 2 1)!/
(2kk!) can be computed (12). This allows the bias to b
expressed asymptotically in closed form:

FIG. 2. D 2(Ldt), the secon
ss

n

c-
n

f-
er

D < CS s9 2

~ f2 2 f4!
2D 2 CS s9 2

~ f1 2 f3!
2D , [12]

where

C~X! 5 X hypergeom~@3/2, 1, 1#, @2#, 2X!/2, [13]

in which “hypergeom” is the Barnes’s extended hypergeo
ric function. In Eq. [11], the first term on the right, ln((f 1 2
f 3)/( f 2 2 f 4)) 5 Ldt, gives the true value ofL, and the othe
terms are the bias terms. Thus, the four-point spectral esti
alone is a biased estimator of relaxation rate,L. This may be a
unavoidable aspect of many kinds of nonlinear estima
which is seen to have the potential to rectify noise power
bias. However, with a separate measurement of noise sta
we can calculate a reasonable estimate of the bias and su
away the bias to give an unbiased estimate ofL. Further insigh
can be derived by focusing on the form of the second-o
bias term,D2. After substitution from [4], it can be express
as

D2 5
s 2e2Ldt

A2dt~1 2 e22Ldt!
[14]

and plotted as a function ofLdt in Fig. 2. This function has
minimum atLdt 5 1

2 ln(2) 5 0.347. Thus, it can be seen t
he objectives of minimum variance and minimum bias
ontradictory experimental design objectives. It is prob
etter to aim for minimum or near minimum variance an
ubtract off the bias.

rder bias, in units ofs 2/A2dt.
d-o
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213SPECTRAL ESTIMATION OF NMR RELAXATION
Other treatments are not exact. The purpose of an exact
ment of NMR relaxation is to allow the relaxation estimate
be used as if they were measurement data, for the purpo
further mathematical modeling (13). Such mathematical mo

ling generally falls into the category of nonlinear estima
nd may involve nonlinear least squares or some othe
anced techniques like median estimation (3). For this purpos
t is necessary that the values estimated be unbiased an
easonable estimates of the standard deviation of each es
e available. Spectral estimation of NMR relaxation provid
igorous mathematical framework in which this can
chieved.

5. THE ANALYTICAL CONTINUATION
OF SPECTRAL ESTIMATION

Now let us assume that the quantitiesA, B, andf in Eq. [1] are
complex. Since spectral estimation is constructed as an exte
of Fourier transform theory in which all quantities are comp
we may expect analytical continuation (14) of spectral estimatio
of NMR relaxation to provide an extension into its natural
main. Phase invariance is seen to be self-evident from the d
structure of the estimator, Eq. [6]. In the presence of an exp
tially decaying transient,L is an estimator for a real positi
quantity and so any imaginary part can be identified as due to
and ignored. We may write (14)

Ldt 5 Re~ln~~ f1 2 f3!/~ f2 2 f4!!!

5 ln~u~ f1 2 f3!/~ f2 2 f4!u! [15]

when Im(ln((f 1 2 f 3)/( f 2 2 f 4))) , threshold,zero other-
ise.
Determination of the expectation value of the estimator

equires evaluation of a quadruple integral for bivariate c
lex Gaussian error,

E~L !dt 5
1

4p 2 E
2`

` E
2`

` E
2`

` E
2`

`

3 lnS f1 2 f3 1 s9~u 1 iv!

f2 2 f4 1 s9~r 1 is! D
3 e2u 21v 21r 21s2/ 2dudvdrds. [16]

As before, the logarithm can be expanded as a power ser
s9 and integrated term by term. This is a convergent sum
only two nonzero terms.

E~L !dt 5 lnS U f1 2 f3

f2 2 f4
U D 2

ip

2 SsignumS f1 2 f3

f2 2 f4
D 2 1D

[17]
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expectation of the imaginary part is zero and the real pa
unbiased. This is much simpler than in the case of real e
Determination of the variance about the mean of the rea
requires explicit construction of the quantity in Eq. [15]. L

Pr 5 Re~ f1 2 f3!, Pi 5 Im~ f1 2 f3!,

Qr 5 Re~ f2 2 f4!, Qi 5 Im~ f2 2 f4!. [18]

e wish to evaluate the quantityE((Re(L ))2), the varianc
about zero. We write

~Re~L!! 2dt2 5 F lnS Î~Pr 1 s9u! 2 1 ~Pi 1 s9v! 2

~Qr 1 s9r ! 2 1 ~Qi 1 s9s! 2DG 2

.

[19]

As before, the quantity on the right-hand side of Eq. [19]
be expanded in a power series ins9 and integrated term b
term using the pdf weighted integral of Eq. [16]. Evaluate
second order, this gives

E~~Re~L !! 2!dt2

5 F lnS U f1 2 f3

f2 2 f4
U D G 2

1 S 1

P r
2 1 P i

2 1
1

Q r
2 1 Q i

2Ds9 2 1 O~s9 4!. [20]

On the right side of Eq. [20], the first term is the square o
mean value of the estimator. The second term is the se
order contribution to the variance. Substituting from Eq. [
the latter can be expressed as a function ofs:

2S 1

u f1 2 f3u 2 1
1

uf2 2 f4u 2D s 2

dt2

5 2S 1

~1 2 e22Ldt! 2 1
1

~e2Ldt 2 e23Ldt! 2D s 2

uAu 2dt2 . [21]

If we take the square root of Eq. [21] and simplify, we
precisely the same form as is shown in Eq. [7] and plotte
Fig. 1. However, in this instance theuAu is the complex mod
ulus and accounts for a greater portion of the signal. Henc
variance and standard deviation are reduced.

6. COMPARISON WITH NLS

Clearly, there is no natural extension of NLS (15) to com-
plex data. For analytical comparison we start by conside
the case of four points of real data collected at equal
increments ofdt. It was Oberlander (16) who first recognize
that NLS may have an analytical solution. If we take
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214 NAUGLER AND CUSHLEY
expression, then differentiate with respect toA, B, andL and
set these expressions to zero, we obtain a system of
equations which can be solved inL to obtain

L 5 2
1

dt
ln~RootOf~~ f2 2 2f3 1 f1! Z4 1 ~2f4 2 2f2

14f1 2 4f3! Z3 1 3~ f4 2 f3 2 f2 1 f1! Z2

1~4f4 2 4f2 1 2f1 2 2f3! Z 2 2f2 1 f3 1 f4!!. [22]

It can be seen that this expression has similarity to that o
four-point spectral estimator and might yield the same v
under some circumstances. However, since a quartic with
coefficients may have up to four real roots, there may
uncertainty regarding whether the global minimum has
achieved via numerical optimization. NLS needs to estima
of the parameters, which is more than we desire. It can be
from [22] that analysis of error propagation or of bias as
have done for spectral estimation is an intractable problem
NLS even with just four points.

NLS relies on approximation. For statistical analysis
covariance matrix can be calculated from the inverse o
Hessian (15), yet generally, in NLS, the Hessian is only

roximated. The approximations used in NLS are good app
mations whenS/N is high, when the number of points used
large, and when convergence is good. However, poorS/N
defines the experimentally interesting situation (2). In NMR we
wish to minimize machine time so a small number of poin
advantageous. Spectral estimation does not require iterat
convergence is not an issue nor is the question (2) of whethe
to use a two-parameter fit or a three-parameter fit.

For numerical comparison, Fig. 3 of Ref. (2) is worth con
sidering. A total of 512 SR scans were used to achieveS/N 5
3000. For atwo-parameter fit they reportT1 5 4.95 6 0.15
, M 0 5 99.4 6 1.1, andx2 5 69923, while for a three

parameter fitT1 5 4.561 6 0.007, M 0 5 98.01 6 0.05,
a 5 20.03976 0.004, andx2 5 121 for NLS analysis of 2
points unequally spaced in time.

It is worth noting the 9% error between NLST1 estimate
from two-parameter and three-parameter fits. Visually, the
fits appear to be very similar. This illustrates a limitation of
concept of data fitting to an exponential function and
visualizing the data. Good visualization requires more
which can be counterproductive and wasteful. Also, an e
nential function is an extreme test of the mathematical ass
tions of NLS that the error in data is small. Error may
relatively small over part of the range but not over the w
range.

Unfortunately, the authors failed to use software wh
reports the covariance of estimation error. We have found
may be a large correlation between estimation errors of
ables. Our 4-point spectral estimator is an analytical expre
which is orthogonal in estimation to other parameters.
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period for SE would be 0.635*4.5615 2.896 s. Starting wit
the first point att 5 0, optimal 4-point SE would use equa
spaced points with the last point att 5 8.869 s. NLSrequires
points at longer delays because of the need to accu
estimate baseline offset. SE represents a large experim
time saving. SE with 512 SR scans is likely to require less
1
4 the instrument time.

Given S/N 5 3000 andassuming four-point SE estimati
is done at the optimal sampling period, 2.896 s, a calculati
Gaussian error (8) gives an estimation error standard devia
of 60.0054 compared to60.007 for three-parameter NL
Hence, we provide better precision with 1/4 the work. In
theoretical formulation we advocate the estimation of re
ation rate as in kinetics. WhenS/N 5 3000, thesecond-orde
estimation bias in relaxation rate is only 1.5E-7 1/s.

It has been reported that whenS/N 5 100, NLS canachieve
a precision of 2% in exponential estimation. In this case
estimation error standard deviation for four-point spectra
timation is 6.6%. Assuming a saturation recovery experim
and neglecting other contributions to experiment time,
estimated time saved can be calculated.

The total time for four-point spectral estimation in SR i

0 1 dt 1 2dt 1 3dt 5 6dt.

Now at optimum,

Ldt 5 0.635,

or

dt 5 0.635T1,

6dt 5 3.81T1.

For a typical NLS SR experiment assume 16 equally sp
times out to a maximum of 5T1, for a total time of

0 1 1/3T1 1 2/3T1 1 · · ·1 4 2/3T1 1 5T1

5 15*16*1/ 2*1/3 5 40T1.

his implies a time saving of 40/3.815 10.5 times. This tim
avings can be used to signal average at the four points w
ncrease inS/N of sqrt(10.5)5 3.24 times, since estimati
error standard deviation is linear inS/N this implies that it is
reduced by 6.6%/3.245 2%.

NLS is believed to be biased but the nature of bias is not
understood. We have shown a bias that is proportion
(N/S) 2, so it is not wise to ignore bias in the experiment
interesting case of poorS/N. In general (15), bias is propor
tional to 1/n, wheren is the number of points used, but
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215SPECTRAL ESTIMATION OF NMR RELAXATION
number of points in NLS to mimimize bias is wasteful of tim
Reference (17) provides a method by which bias can be
duced to a value which is proportional to 1/n2 but this metho
is tedious and has never been used in NMR.

In summary, efficiency and rigorous mathematical stati
(9) requires that we use four-point spectral estimation ra
than NLS for the estimation of NMR relaxation.

7. THE BASEPLANE

Consider what happens when we apply the spectral esti
in a region in which there is no signal. The mean values of 1,
f 2, f 3, and f 4 are now zero. So we need to consider
properties of the random variable,

L 5 lnSx
yD , [23]

where x and y are each random variables from a comp
Gaussian probability distribution. Now the argument or ph
angle ofx and ofy is uniformly distributed in the range [0, 2p],
therefore, the argument of the quotient is also uniform in
2p]. The expected magnitude,

ES lnU x
y
U D 5 lnSE~uxu!

E~uyu!D 5 lnSE~uxu!
E~uxu!D 5 0,

and, since each ofx and y is of unit variance or standa
deviation, so isux/yu. Now since­ ln( z)/­ zu z51 5 1, lnux/yu has
unit variance or standard deviation about zero. This is m
greater error than that in the presence of an exponen
decaying transient. Hence, we should choosethresholdsuffi-
ciently high that points on the baseplane are coerced to
Nor do we need worry about the concept of a linesh
function. With threshold sufficiently high, the informatio
content is contained in the nonzero points which remain.

8. DISCUSSION

The property of phase invariance is an extremely impo
property of spectral estimation. Not only does this allow u
dispense with a lot of the work associated with phasing but
it allows the dispensing of a lot of the computational mac
ery. Hypercomplex data storage is used innD FT NMR to
separate the imaginary parts of FT spectra by frequenc
mension so that proper phase can be determined and ap
With spectral estimation there is a savings in storage req
since only complex FT data are needed. Thus, the pa
signal strength that are lost as mixed real and imaginary
are retained. This adds to sensitivity. We have discussed
.
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tral estimation can be applied to conventional NMR relaxa
pulse sequences in a straightforward manner. In 2D NO
the cross-peak volumes give a rough approximation of th
diagonal elements of the cross-relaxation matrix. If expa
in one more dimension with four slices at equally spa
mixing times, spectral estimation will give estimates of
NOE build up rates as the end result of anD FT calculation
Many kinds ofnD pulse sequences could be likewise expan
by appending a (possibly heteronuclear) Carr–Purcel
quence. Similar considerations may apply to MRI.
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